skip to main content


Search for: All records

Creators/Authors contains: "Martin, Steve"

Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher. Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?

Some links on this page may take you to non-federal websites. Their policies may differ from this site.

  1. We present a 23Na nuclear spin dynamics model for interpreting nuclear magnetic resonance (NMR) spin-lattice relaxation and central linewidth data in the invert glass system Na4P2S7-xOx, 0 ≤ x ≤ 7. The glassy nature of this material results in variations in local Na+ cation environments that may be described by a Gaussian distribution of activation energies. A consistent difference between the mean activation energies determined by NMR and DC conductivity measurements was observed, and interpreted using a percolation theory model. From this, the Nasingle bondNa coordination number in the sodium cation sublattice was obtained. These values were consistent with jumps through tetrahedral faces of the sodium cages for the sulfur rich glasses, x < 5, consistent with proposed models of their short range order (SRO) structures. From NMR spin-echo measurements, we determined the Nasingle bondNa second moment M2 resulting from the Nasingle bondNa magnetic dipole interaction of nearest neighbors. Values of M2 obtained as a function of sodium number density N were in agreement with models for uniform sodium distribution, indicating that these invert glass systems form so as to maximize the average Nasingle bondNa distance. A simple Coulombic attraction model between Na+ cation and X (=S−, O−) anion was applied to calculate the activation energy. In the range 1.5 ≤ x ≤ 7, an increase in activation energy with increasing oxygen content x occurred, and was consistent with the decrease in average anionic radius, and the increase in Coulombic attraction. For small oxygen additions, 0 ≤ x ≤ 1.5, the suggested minimum at low oxygen concentration seen in the activation energies obtained from DC conductivity data is not evident in the model. 
    more » « less
    Free, publicly-accessible full text available December 1, 2024
  2. Liping Huang ; Lina Hu ; Barrett Potter ; Edgar Dutra Zanotto (Ed.)
    In this work, the compositional series of sulfide and mixed oxysulfide (MOS) glasses 0.56Li2S + 0.44[(0.33-x)PS5/2 + xPO5/2 + 0.67SiS2] was prepared, where 0 ≤ x ≤ 0.33, and their short range order (SRO) structures and their thermal properties have been investigated. Powder x-ray diffraction (XRD) confirmed that the MOS glasses were free from crystallization, with only very minor diffraction peaks in the x = 0 glass being observed. Fourier transform infrared (FT-IR), Raman, and 29Si and 31P magic angle spinning (MAS) NMR spectroscopies were used to identify the SRO structures present in these glasses. These spectra revealed oxygen migration from P to Si during synthesis. Although oxygen was introduced in the form of phosphorus oxide, the majority of the oxygen in these glasses ends up being bonded to silicon, thereby creating sulfur-rich SROs centered by phosphorus and MOS SROs centered by silicon. It was further found that the P-S SRO species were predominantly charged non-bridging sulfurs (NBS). The Si SRO species were comprised of neutral bridging oxygens (BOs) and charged non-bridging oxygens (NBOs) and neutral bridging sulfurs (BS) and charged non-bridging sulfurs with the neutral BO and BS species being larger in fraction than the NBO and NBS. These results suggest that the preponderance of the mobile Li+ cations in these glasses are located near the more negatively charged P centers and not near the more neutrally charged Si centers. The average negative charge of the P SRO structures was found to be ∼ − 3.0 with ∼97% of the phosphorous species in the P0 SRO while the average negative charge of the Si SRO structures was found to be −2.3. Consistent with the creation of the large numbers of NBS on the P and more BOs and BSs on the Si, these values are more negative and more positive, respectively, than the compositionally expected average value of −2.55. Differential scanning calorimetry (DSC) measurements of their glass transition (Tg) and crystallization (Tc) temperatures showed that the Tgs of these glasses are higher than 300 °C and their working ranges, ΔT ≡ Tc – Tg, are ∼100 °C. 
    more » « less
    Free, publicly-accessible full text available September 1, 2024
  3. Na4P2S7-6xO4.62xN0.92x (NaPSON) glassy solid electrolytes (GSEs) were prepared and tested for their electrochemical properties and processability into thin films. The x = 0.2 composition (NaPSON-2) was found to be highly conducting, non-crystallizable, largely stable against Na-metal and supports symmetric cell cycling up to >100 µA cm-2 without shorting and for these reasons was processed into thin films drawn to 50 m and tested in symmetric and asymmetric cells. Measurements of the sodium ion conductivity using symmetric cells demonstrated that the conductivity of NaPSON-2 was unchanged by film forming. Galvanostatic cycling at 5 A cm-2 of 1.3 mm NaPSON-2 showed stability over 450 hours, while cycling a 50 m thin film showed a very slow growth in the resistance. Cyclic voltammetry and x-ray photoelectron spectroscopy of the NaPSON-2 thin film GSE revealed that it did not react with Na-metal at its surface, but rather in the bulk of the film, showing S, Na2S, and Na3P reaction products. The source of the surface stability was determined to be the preferential segregation of trigonally coordinated nitrogen. These low-cost and easily processed NaPSON GSEs provide a system of materials which could provide for significantly lower cost higher energy density grid-scale batteries. 
    more » « less
    Free, publicly-accessible full text available June 12, 2024
  4. In this work we demonstrate that cell pressure controls the morphology and stability of electroplated sodium metal deposits on carbon black nucleation layers in ether-based electrolytes. At pressures below 500 kPa we observe the presence of three-dimensional Na nuclei accompanied by low Coulombic efficiencies (CEs less than 98%). Conversely, at pressures between 500 and 1272 kPa we observe smooth, planar Na deposits, high CEs up to 99.9%, and stable electrochemical cycling. Through a series of tests conducted at elevated current densities and with or without rest stages, our findings elucidate the balance of important competing time scales for creep and morphology evolution under pressure and the rate of charge transfer that determines Na morphology and stability. This highlights how chemo-mechanical effects at pressure ranges relevant for battery packaging in coin and pouch cells are key factors in the design and operation of Na metal batteries. 
    more » « less
    Free, publicly-accessible full text available June 9, 2024
  5. Here we provide an in-depth structural characterization of the amorphous ionic glasses LiPON and LiSiPON with high Li content. Based on ab-initio molecular dynamics simulations, the structure of these materials is an inverted structure with either isolated polyanion tetrahedra or polyanion dimers suspended in a Li+ matrix. Based on neutron scattering data, this type of inverted structure leads to a significant amount of medium-range ordering in the structure, as demonstrated by two sharp diffraction peaks and a periodic structural oscillation in the density function G(r). On a local scale, adding N and Si increases the number of anion bridges and polyanion dimer structures, leading to higher ionic conductivity. In the medium range ordering, the addition of Si leads to more disorder in the polyanion substructure but a significant increase in the ordering of the O substructure. Finally, we demonstrate that this inverted structure with medium range ordering results in a glassy material that is both mechanically stiff and ductile on the nanoscale. 
    more » « less
  6. Abstract

    The glassy solid electrolyte Lithium phosphorous oxynitride (LiPON) has been widely researched in thin film solid state battery format due to its outstanding stability when cycled against lithium. In addition, recent reports show thin film LiPON having interesting mechanical behaviors, especially its ability to resist micro‐scale cracking via densification and shear flow. In the present study, we have produced bulk LiPON glasses with varying nitrogen contents by ammonolysis of LiPO3melts. The resulting compositions were determined to be LiPO3‐3z/2Nz, where 0 ≤ z ≤ 0.75, and the z value of 0.75 is among the highest ever reported for this series of LiPON glasses. The short‐range order structures of the different resulting compositions were characterized by infrared, Raman,31P magic angle spinning nuclear magnetic resonance, and X‐ray photoelectron spectroscopies. Instrumented nano‐indentation was used to measure mechanical properties. It was observed that similar to previous studies, both trigonally coordinated (Nt) and doubly bonded (Nd) N co‐exist in the glasses in about the same amounts forz ≤ 0.36, the limit of N content in most previous studies. For glasses withz > 0.36, it was found that the fraction of the Ntincreased significantly while the fraction of Ndcorrespondingly decreased. The incorporation of nitrogen increased both the elastic modulus and hardness of the glass by approximately a factor of 1.5 when N/P ratio reaches 0.75. At the same time, an apparent embrittlement of the glass was observed due to nitridation, which was revealed by nanoindentation with an extra sharp nanoindenter tip.

     
    more » « less
  7. Abstract All-solid-state sodium batteries (ASSSBs) are promising candidates for grid-scale energy storage. However, there are no commercialized ASSSBs yet, in part due to the lack of a low-cost, simple-to-fabricate solid electrolyte (SE) with electrochemical stability towards Na metal. In this work, we report a family of oxysulfide glass SEs (Na 3 PS 4− x O x , where 0 <  x  ≤ 0.60) that not only exhibit the highest critical current density among all Na-ion conducting sulfide-based SEs, but also enable high-performance ambient-temperature sodium-sulfur batteries. By forming bridging oxygen units, the Na 3 PS 4− x O x SEs undergo pressure-induced sintering at room temperature, resulting in a fully homogeneous glass structure with robust mechanical properties. Furthermore, the self-passivating solid electrolyte interphase at the Na|SE interface is critical for interface stabilization and reversible Na plating and stripping. The new structural and compositional design strategies presented here provide a new paradigm in the development of safe, low-cost, energy-dense, and long-lifetime ASSSBs. 
    more » « less